21 research outputs found

    MYBBP1A (MYB binding protein (P160) 1a)

    Get PDF
    Review on MYBBP1A (MYB binding protein (P160) 1a), with data on DNA, on the protein encoded, and where the gene is implicated

    Phenotypic analysis of hMSH2 mutations in mouse cells carrying human chromosomes

    Full text link
    Conversion of diploidy to haploidy is a method that allows the generation of stable murine/human hybrid cell lines carrying selected human chromosomes in only a single copy. In this setting, it is possible to detect genetic mutations with greater sensitivity and reliability than in diploid cells. Using this method, we were able to identify mutations in the human mismatch repair (MMR) gene hMSH2 in hereditary nonpolyposis colon cancer families, which have escaped detection by the conventional methods. In this report, we show that such hybrid cell lines can also be a valuable tool in the study of the mutated MMR proteins, in particular the variants found in hereditary nonpolyposis colon cancer families that carry missense mutations and where it is unclear whether they predispose to colon cancer. This analysis is made possible by the fact that the human hMSH2 protein is able to complement the MMR defect in the host murine cell line

    BrewerIX enables allelic expression analysis of imprinted and X-linked genes from bulk and single-cell transcriptomes

    Get PDF
    Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies

    The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase

    No full text
    The human MSH2/6 complex is essential for mismatch recognition during the repair of replication errors. Although mismatch repair components have been implicated in DNA homologous recombination repair, the exact function of hMSH2/6 in this pathway is unclear. Here, we show that the recombinant hMSH2/6 protein complex stimulated the ability of the Bloom's syndrome gene product, BLM, to process Holliday junctions in vitro, an activity that could also be regulated by p53. Consistent with these observations, hMSH6 colocalized with BLM and phospho-ser15-p53 in hydroxyurea-induced RAD51 nuclear foci that may correspond to the sites of presumed stalled DNA replication forks and more likely the resultant DNA double-stranded breaks. In addition, we show that hMSH2 and hMSH6 coimmunoprecipitated with BLM, p53, and RAD51. Both the number of RAD51 foci and the amount of the BLM–p53–RAD51 complex are increased in hMSH2- or hMSH6-deficient cells. These data suggest that hMSH2/6 formed a complex with BLM–p53–RAD51 in response to the damaged DNA forks during double-stranded break repair

    Basic concepts and architectural details of the DELPHI trigger system

    No full text
    Delphi (DEtector with Lepton, Photon and Hadron Identification) is one of the four experiment of the LEP (Large Electron Positron) collider at CERN. The detector is laid out to provide a nearly 4 pi coverage for charged particle tracking, electromagnetic, hadronic calorimetry and extended particle identification. The trigger system consists of four levels. The first two are synchronous with the BCO (Beam Cross Over) and rely on hardwired control units, while the last two are performed asynchronously with respect to the BCO and are driven by the Delphi host computers. The aim of this paper is to give a comprehensive global view of the trigger system architecture, presenting in detail the first two levels, their various hardware components and the latest modifications introduced in order to improve their performance and make more user friendly the whole software user interface
    corecore